
Creating Beautiful Diagrams Using Language
Katherine Ye and the PENROSE team, Carnegie Mellon University

Typesetting software like LATEX has accelerated scientific communication by beautifully typesetting plain-
text notation, but no equivalent exists for making diagrams. We are therefore building a system called
PENROSE, which allows people to create beautiful diagrams by just typing mathematical notation in
plain text. Penrose aims to enable non-experts to create and explore high-quality diagrams, providing deeper
insight into challenging technical concepts. Figure 1 illustrates how abstract statements about concepts in
linear algebra may be automatically converted into a diagram. (I will use linear algebra as a running example,
but PENROSE is designed to be extensible to any mathematical domain.)

VectorSpace U, V, W, X
LinearMap f : U → V
LinearMap g : V → W
LinearMap h : W → X

Vector u1, u2, u3, u4, u5 ∈ U
Vector v1, v2, v3 ∈ V
u3 := u1 + u2
v1 := f(u1)
v2 := f(u2)
v3 := f(u3) = v1 + v2
Scalar a := det(u1,u3)
u4 := a * u2
u5 := -u4

Scalar m := |v2|
Scalar c := <v1, v3>
Vector w1 ∈ W := g(v1)
Vector x1 ∈ X := h(w1)

Fig. 1: Example notation and
mockup diagram in linear algebra.

PENROSE is a highly interdisciplinary project that draws on insights
from the areas of programming languages, computer graphics, and
systems. The core challenge in designing the PENROSE languages is to
provide customizable visual representations for concept-level expressions
in an extensible collection of domains. The core challenge in designing
the the numerical solver is to quickly create diagrams with user-defined
shapes, objectives, and constraints so these diagrams are both beautiful
and meaningful. And the core challenge of building the whole system
is to bridge the two: to automatically turn the conceptual relationships
defined at the language level into a concrete visual representation. Rather
than focusing on a fixed set of mathematical objects, we aim to make this
framework user-extensible.

1 PENROSE makes it easy for anyone to make domain-
specific diagrams
To address the key research challenges discussed in the introduction, we
have built PENROSE to fit three design goals: to provide a general-purpose,
high-level, and extensible platform for creating diagrams. What system
design supports these goals? A compiler-like pipeline organization, shown
in Fig. 2, is a natural choice. It fits the step-by-step construction of a
diagram from textual user input, while allowing customization of each
stage to support a highly expressive and usable system. We have designed
PENROSE to comprise three languages for expressing diagrams, along
with a compiler, optimization runtime, and user interface.

The first language, called the domain description language (DDL),
provides a way for domain experts to concisely inform PENROSE about
the types of objects in a domain and the relationships between them. Then,
given a domain description, PENROSE creates two languages specifically
for that domain. The two languages, SUBSTANCE and STYLE, enforce
a clean separation between content and form, akin to the separation
between content and form provided by HTML and CSS. SUBSTANCE is a programming language for
specifying domain-level meaning, completely independent of visual representation; for instance, an expression
in standard mathematical notation. STYLE is a language for defining how domain-level meaning is translated
into a visual representation.

Given a domain description, a SUBSTANCE program, and a STYLE program, the PENROSE compiler
synthesizes a constrained optimization problem corresponding to an objective function defining the “goodness”
of the diagram. The optimization problem is solved by a numerical solver, yielding several beautiful and
automatically-laid-out diagrams in a matter of seconds, which the user may then tweak by direct manipulation.

The generality of this approach offers many advantages. For example, all domains embedded in PENROSE

have consistent syntax and semantics for their languages, all language implementers can tap into the general
and powerful optimization runtime that the platform offers, and any improvement to PENROSE as a whole

1

.STY .STY

.SUB

.STY

PARSING

DOMAIN
DESCRIPTIONS

SUBSTANCE
PROGRAM

STYLE PACKAGE
(INTERCHANGEABLE)

DIAGRAM

SEMANTIC
CHECKING

ABSTRACT
STYLING

NUMERICAL
OPTIMIZATION

user
interaction

Fig. 2: The pipeline used to convert SUBSTANCE and STYLE programs to diagrams.

(e.g. a better layout algorithm or an expanded library of shapes and objectives) will automatically improve
all domains embedded in the platform. PENROSE’s language-based approach also offers great flexibility and
generality. Most users of our system will not require any graphic design skill to create beautiful diagrams.
The widespread success of LATEX is a clear indicator that this kind of language-based paradigm can enjoy wide
adoption. Just as LATEX revolutionized written technical communication by codifying the best practices of
professional typesetters (allowing authors to focus on content), PENROSE aims to revolutionize the way people
visually communicate logical ideas.

In the following sections, I discuss how the PENROSE pipeline works with a simple end-to-end example
drawn from the domain of linear algebra, using real PENROSE code, highlighting the key research
challenges at each stage. Further information on PENROSE may be found in our OBT 2017 [1] and DSLDI
2017 [2] papers.

1.1 Domain implementers can use the domain description language to easily add domains

tconstructor VectorSpace : type
tconstructor Vector : type
predicate In (v : Vector,

V : VectorSpace) : Prop
operator AddV (v1 : Vector, v2 : Vector)

: Vector
StmtNotation "Vector a ∈ U" →

"Vector a; In(a,U)"
StmtNotation "v1 + v2" → "AddV(v1,v2)"

Fig. 3: A simple domain descrip-
tion for linear algebra.

The domain description language (DDL) enables expert users to inform
PENROSE about the meaning of a new domain. In a domain description,
the user declares the abstract objects in a domain as types, declares func-
tions that can be applied to them in terms of type signatures involving
the objects, and declares logical relationships between objects as typed
predicates. The DDL also enables users to declare custom syntax for the
domain, which can automatically be used in SUBSTANCE and STYLE

programs. The DDL’s design builds on work in language workbenches
like Spoofax [3] and programmable syntax [4], and we are extending it so
users can define composable syntax extensions for mathematical notation
in multiple domains.

Fig. 3 gives a simple example of how a language implementer might start to write a domain description for
linear algebra in PENROSE. First, they define the types in the domain, here vector spaces and vectors. Next,
they define a predicate that relates the objects in the domain at an abstract level; namely, that a vector may be
an element of a vector space. Then, they define an operation that may be applied on objects in the domain; that
is, two vectors may be added to yield another vector. Lastly, they define syntactic sugar for naturally stating
concepts in the domain, such as adding vectors and stating that a vector is in a vector space. Using the domain
description in Fig. 3, PENROSE automatically generates the SUBSTANCE and STYLE languages for making
statements about linear algebra concepts and for defining visual representations of those concepts.

VectorSpace U
Vector u1, u2, u3, u4, u5 ∈ U
u3 := u1 + u2
u5 := u3 + u4

Fig. 4: A simple SUBSTANCE pro-
gram for vector addition.

Types are central to PENROSE’s language design. Building on the
approach taken in [5], we model mathematical relationships in terms
of types and predicates, which enables us to design clean mechanisms
for extensible syntax, SUBSTANCE typechecking, and STYLE pattern-
matching.

1.2 End-users can state high-level concepts in the SUBSTANCE lan-
guage
SUBSTANCE is designed to model abstract, natural mathematical language
in an extensible manner, inspired by the mathematical languages embedded in software like Coq and Mathe-
matica. Because SUBSTANCE has been formalized as a programming language, PENROSE can provide
the end-user with powerful type inference and typechecking of mathematics.

2

Consider two kinds of end-users: a student is learning about vector addition and wants to understand if this
operation is commutative and associative, and a professor wants to illustrate the properties of vector addition in
a textbook. These end-users will simply import the existing domain description and write natural mathematical
statements just like what would appear in an introductory textbook, as in Fig. 4, which gives the addition
of three vectors. Writing concepts in SUBSTANCE liberates the end-user from having to decide the visual
appearance of objects in the domain or figure out low-level details like their positions and sizes.

1.3 Domain implementers concisely define visual representations in the STYLE language

Vector v
with VectorSpace U
where v ∈ U {
v.shape = Arrow {

start = U.shape.center
}

ensure contains(U.shape, v.shape)
encourage nearHead(v.shape, v.text)

}

Vector u
with Vector v, w; VectorSpace U
where u := v + w; u, v, w ∈ U {

u.shape.end = v.shape.end + w.shape.end

u.slider_v = Arrow {
start = w.shape.end
end = u.shape.end
style = "dashed"

}

u.slider_w = Arrow { ... }
}

Fig. 5: Styling individual vectors
and vector addition.

The STYLE language, which builds on the design of stylesheet languages
like CSS and SASS, enables a language implementer to define a composi-
tional visual semantics for SUBSTANCE language in their domain. To do
so, the user writes STYLE selectors and blocks that declaratively define a
minimal set of shapes and spatial relationships that must hold to faithfully
visualize the mathematics, without having to specify low-level details like
position or size, and with the ability to tap into a powerful optimization
runtime for automatic layout. The semantics of STYLE itself includes
a novel semantics for type-driven pattern-matching. Most end-users
will import a STYLE package that defines the visual representation of their
domain, so I will describe how a STYLE package defines one common
visual representation for linear algebra. (However, any STYLE package
only defines one visual representation of a domain; one can easily import
another style.)

The first selector in Fig. 5 pattern-matches on all vectors in the SUB-
STANCE program that are declared to lie in a vector space, and its block
defines the visual representation of vectors as rooted at the origin of that
vector space, which is drawn as a 2D Cartesian plane. (Styling for vector
spaces is omitted.) The keywords encourage and ensure enable a STYLE writer to declare objectives and
constraints that hold on the shapes, which are automatically solved by the runtime. Vector addition is then
styled by refining the vector style. The second selector in Fig. 5 pattern-matches on all vectors declared to be
the sum of two vectors, and its block styles them in the common “tip-to-tail” manner by performing the vector
addition, also drawing “slider” vectors to show the “tip-to-tail” mnemonic.

1.4 Optimization solves the hard problem of automatic, general-purpose diagram creation
We have now seen a description for the linear algebra domain, written a SUBSTANCE program for adding three
vectors, and found a STYLE package for the domain. How does all that text get turned into beautiful pictures?
When a user writes a STYLE program, they could be using any combination of custom shapes, together
with any combination of custom objective functions and constraints defined on the shapes. Thus, the
PENROSE system must provide an automatic, general, and extensible solver and layout engine.

First, to perform optimization on arbitrary shapes, PENROSE must be able to quickly answer queries about
shapes, e.g. distance, tangency, and intersection. Thus, we are designing fast algorithms for performing general
shape-shape queries via polygonization. Next, PENROSE must be able to automatically optimize shapes’
attributes with respect to these queries. Most optimization methods require taking the gradient with respect
to the numerical parameters, so the PENROSE pipeline is designed to be end-to-end differentiable, even
through arbitrary user-defined shapes and functions. Lastly, the optimization problem itself can be arbitrarily
hard to solve: nonlinear, nonconvex, highly constrained, and composed of heterogeneous objectives (i.e. energy
functions that behave very differently from each other). How can we ensure that the optimizer reliably solves
these problems, and does so quickly, while yielding maximally beautiful and “useful” diagrams for the user?
Currently, the PENROSE solver finds local minima of the energy function using a combination of gradient
descent, line search, and the exterior point method. To improve the generality of the optimizer, we are designing
methods for automatically improving the conditioning of the optimization problem, e.g. by normalizing the
energy functions.

3

Fig. 6: Real PEN-
ROSE diagrams illus-
trating vector addition.

In our linear algebra example, the PENROSE compiler analyzes the combination
of programs to create the initial state of this diagram, which consists of arrows,
boxes, and labels. The compiler also builds the constrained optimization problem that
is programmatically defined by the STYLE package, which consists of constraints
requiring that every vector’s shape be visually contained in the vector space’s shape,
as well as objectives encouraging every vector’s label to be near the arrowhead.

Each solution to the optimization problem is a diagram. Two such solutions
are displayed in Fig. 6. The solutions respect the meaning of the mathematics, illus-
trating that vector addition is indeed commutative and associative. The solutions also
explore the “degrees of freedom” of parameters left unspecified in the mathematical
notation. One interesting case is shown, where two parallel vectors are added.

The user may now directly manipulate the diagram (e.g. by dragging a
label or arrowhead), in which case the optimizer can produce an adjusted
diagram that still satisfies the constraints. The ability to specify graphi-
cal constraints, and the ability to manipulate the results while respecting
these constraints (à la the software Cinderella [6]), frees PENROSE users
from much of the tedious manual manipulation typical of existing illustration
systems, while giving experts the detailed control needed to ensure quality
output.

References
[1] K. Ye et al. Designing extensible, domain-specific languages for mathematical diagrams. Off the Beaten Track, 2017.

[2] K. Ye* and W. Ni* et al. Substance and style: domain-specific languages for mathematical diagrams. Domain-Specific Language
Design and Implementation, 2017.

[3] L. Kats and E. Visser. The spoofax language workbench. In ACM SIGPLAN Notices. ACM, 2010.

[4] C. Omar. Reasonably Programmable Syntax. PhD thesis, Carnegie Mellon University, 2017.

[5] Mohan Ganesalingam. The language of mathematics. PhD thesis, Springer, 2010.

[6] Jürgen Richter-Gebert and Ulrich H Kortenkamp. The interactive geometry software Cinderella. 1999.

4

	Penrose makes it easy for anyone to make domain-specific diagrams
	Domain implementers can use the domain description language to easily add domains
	End-users can state high-level concepts in the Substance language
	Domain implementers concisely define visual representations in the Style language
	Optimization solves the hard problem of automatic, general-purpose diagram creation

